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Abstract

In this paper, a two-stage damage identification method has been proposed using the data obtained from piezo-
electric sensors. In the first stage, a first-order approximation technique is presented for numerically predicting the
transient response of electrical potential change on sensors caused by damages. Both numerical and experimental data
in the time domain are transformed into the frequency domain using the FFT technique. The damage locations can then
be detected by matching the numerical data and the experimental data in the frequency domain through a proposed
detection technique. After identifying the possible damage locations, in the second stage, an iterative estimation scheme
for solving nonlinear optimization programming problems, based on the quadratic programming technique, is put
forward to predict damage extents. A beam example has been employed to illustrate the effectiveness of the algorithm
numerically. Furthermore, various investigations, such as the accuracy of the proposed first-order approximation
technique, the influences of the excitation frequency of external force, and modelling errors and measurement noises on
the results have been carried out. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The development of a new class of “smart” materials and adaptive structures with sensory/active ca-
pabilities may improve the performance and reliability of aeronautical structural systems. Till now, al-
though the applications of actuators and sensors in structural control have received much attention, the
researches in the field of damage identification are comparatively limited (Zou et al., 2000). Here some main
researches in this field are reviewed briefly. Many researches in this field, till now, have been focused on
experimental investigation of the change in the data of piezoelectric sensors due to damages and illustration
of the possible detection of the presence of damages. For instance, Luo and Hanagud (1997) have shown
the possibility of delamination detection using the nonlinear characteristics of delaminated structures and
PVDF sensor sensing properties. Jian et al. (1997) and Penn et al. (1999) have used the vibration data
(natural frequency data) from sensors to show the effect of delaminations. They found that the effect of
delaminations on the frequency data of thin composite plates is very obvious and decreases rapidly with the
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increase of plate thickness. Some authors have tried to locate the damages using the piezoelectric sensors.
Keilers and Chang (1995a,b) have set up a numerical beam model and employed it with experimental data
of frequency response function (FRF) from an attached sensor to identify the delamination location
randomly. Banks et al. (1996) put forward a theoretical model for a cantilever beam employing the pa-
rameterized partial differential equations and the Galerkin approximation technique. Furthermore, an
optimization model solved by a least-square error minimization procedure was proposed for locating the
damages using the data of sensors in the time domain. They argued that the data in the time domain are
more valuable than those in the frequency domain. Actually, on this topic there has been a long debate.
Schulz et al. (1999) have used the transmittance function method to locate the damages with multiple
sensors. As they stated, there are some merits using the smart materials for structural health monitoring,
such as the continuously on-line or real-time monitoring ability and the comparatively high frequency
excitations induced by actuators. Further, Okafor et al. (1996) used the modal data and neural network for
delamination detection with built-in piezoelectric sensors in a beam.

It is well known that a major branch in the damage identification is modal based methods. One of the
major concerns regarding using the modal analysis to detect damage is that damage is a local phenomenon
and modal information is a reflection of the global system properties. Thus, some approaches transform this
global information into local information, such as curvatures or strains. From this aspect, it seems that the
local information provided by sensors is suitable for damage identification. However, a significant drawback
of piezoelectric sensor is just that its data are extremely very limited and localized due to the characteristics
of strains. If the sensors are not located in or near the damaged areas, it is difficult to discover the damages
because the damages generally have very little or even no influence on the strains of areas, which are far from
damaged areas. This may be an important reason for the random search used by Keilers and Chang
(1995a,b) even for a simple beam problem. One possible way is to recover the global deformation data from
the strain data using the method by Kahl and Sirkis (1996) for a beam. However, this method needs at least
to attach the strain gauges onto all sub-sections of the beam. In the current research, a two-stage damage
identification method is proposed using limited number of piezoelectric sensors. In the first stage, a first-
order approximation technique, which separates the effects of damage severity and damage locations, is
proposed to obtain the electrical potential change on sensors in the time domain. In order to detect the
damage locations more clearly, both numerical and experimental data in the time domain are transformed
into the frequency domain. The damage locations can then be detected by matching the numerical data and
the experimental data through a proposed identification technique. This technique combined with the
previous first-order approximation can eliminate the influence of damage severity for better detection of
damage locations. After obtaining the possible damage locations, in the second stage, an iterative scheme for
solving nonlinear optimization programming problems, based on the quadratic programming technique, is
proposed to predict damage extents. A beam example is employed to illustrate the effectiveness of the al-
gorithm. The accuracy of the proposed first-order approximation technique has been discussed. The com-
parison of the damage identification using the data in the time domain and the frequency domain has been
carried out. Furthermore, the influences of the excitation frequency of external forces, modelling errors and
measurement noises and window methods in the FFT on the results have been investigated in detail.

2. Theory

2.1. Basic assumptions and system equations

The equation of a pre-damaged system can be described as follows:

Miij + K’uy = Q (1a)
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where M is the mass matrix, i, is the system acceleration vector, uy is the displacement vector, K° is the
effective stiffness matrix, Q represents the mechanical force or actuator force vector and ¢y is the vector of
electrical potential on sensors. Also, K” and S will be briefly described in Appendix A.

The equation of a damaged system can also be cast into the following similar form:

Mii; + (K’ + AK)u; = Q (2a)
¢y = —Su, (2b)

where damages are considered as a perturbation of the stiffness matrix, i.e., AK.

Generally, damping is also very sensitive to structural damages. For instance, increase in damping due to
damages in composite materials was reported to be many fold (Chandra et al., 1999). Then, it is possible to
employ the change of damping as measure of damage. However, general speaking, damping often has too
low influence on dynamic responses. In this study, for the sake of simplicity, the damping is neglected.

From Egs. (1a)—(2b), it can be seen that the task of damage identification is to search for the damage
location and to estimate the damage extents by analysing the difference between d)g and (I)é. Generally, the
response of damaged structures is a nonlinear function of damage location and damage extent, i.e.,
®& (2, P), where o is the damage extent and P is a vector representing the damage positions. For the sake of
simplicity, the effect of damage extent is simplified by a scalar «. It is usually difficult to identify two pa-
rameters simultaneously due to very limited data and coupled effects of two parameters. We try to separate
the influences of two parameters in order to search for the damage location more easily. Performing the
Taylor expansion of d)é(oc,P) to o leads to

s (o0, P) = 3 + 2A (P) + oAy (P) 4 - - - )

where A, A,, ... are only functions of damage locations.

This is the fundamental assumption in this research, i.e., the effects of damage extent and damage lo-
cation can be separated approximately. This assumption is reasonable. For instance, Cawley and Adams
(1979) showed that the ratio of frequency changes in different modes is only a function of damage location
and not the magnitude of damage. Our previous experimental research (Wang et al., 2001) also showed that
the ratio of frequency changes and displacement changes is only a function of damage location. From Eq.
(3), the electrical potential change can be expressed as,

Adg (2, P) ~ oA (P) + *Ay(P) + - - (4)

A technique for damage detection is proposed later to eliminate the influence of o when only the first-
order approximation is used. The first-order approximation may be inaccurate for computing high damage
extents. However, it can be used for detection of damage locations if the main features of structural re-
sponse can be captured.

2.2. First-order approximation

By employing the modal superposition method, the transient response uy(?) of the pre-damaged system
can be expanded as follows:

N

u(x,1) = Y @;(x)] (1) (5)

i=1
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where x denotes the spatial position of a particle. Re-writing Eq. (1a) in the modal space results into
(1) + o22(1) = 97 Q1) (6)
where @, and ; are the mode and frequency of undamaged structure, i.e., Ko(pi = w’M@,. In derivation of
Eq. (6), the following conditions are employed although the normalization in Eq. (7b) may be unnecessary
in the current approach,
0] K¢, = o] and ¢[K’@, =0 (i #)) (7a)

oM@, =1 and ¢/ M@, =0 (i #)) (7b)

Under condition of the harmonic input for Q(z), especially for the case of sinusoidal input, i.e.,
p sin(w,7), where p is a vector (€ #"' and n is the degrees of freedom of system) denoting the positions and
amplitudes of loads, Eq. (6) can be solved from Duhamel’s integral for zero initial conditions as follows:

T t T
) =P / sin(w,7) sin oy (t — 1)dt = 2P (1) 8)
Wi Jo ’ W;

where the integral F;(¢) can be described in the following form:

—sin(wyt)w; + sin(w;t)w;,

E) = ©)

(of + ;) (0w — o)

Furthermore, Eq. (2a) can also be expanded in the modal space as follows:
& (1) + @ix; (1) = 9] Q(7) (10)

where @, and @, are the natural frequency and vibration mode of damaged structure. The solution of Eq.
(10) can be obtained in the same way as stated above

&7 — sin(w)@: + sin(@;
() = 9, pE.*(t) and F'(1) = sin(w;,t)o; + sin(@;t)w; (1)

o; (0 + @) (e — @)
In the above equation, the response of damaged structure is obviously a nonlinear function of structural
modal data. By employing the following perturbations:

®; = w; + Aw; and @; = @; + Ag, (12)

and neglecting the higher-order terms, such as (Aw;/w;)’, (A(pl.T)2 and (A@] Aw,/w;) in the expansion, x; (7)
in Eq. (11) can be finally approximated as

T AT T Aw;
FZ‘%ME-t ME; MF.IZ‘ . 13
(0~ PR 4 S8R g 1 AP gy (B (13

where

) sin(ost)w;(0F + 0F)  oolcos(wi)t(w; — of) + 2sin(wt)o]  sin(wt)w; — o sin(w;)
B = e v o T 20t + ot Yo, — o

(0} = 2wj07 + of) Wy = 2070; + o) (@f + wi)(0r — o)

(14)

There is cos(w;?)t in the numerator of the second term of Eq. (14), which is nonharmonic. Actually, this
term is obtained from sin(;?) in the second term of the numerator of F*(¢) in Eq. (11) because there is

sin(@w;¢) = sin(w;t + Aw;t) = sin(Aw;t) cos(w;t) + sin(w;t) cos(Aw;t) = Aw;t cos(w;t) + sin(w;t)  (15)

The displacements of damaged structure can also be expressed as
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N
i (x,0) = > @,(x)x/ (1) (16)
i=1
From Egs. (5), (8), (13) and (16), the change of displacement caused by damages is
Ag/p 9/ p Ao
Au = uy — A F(t) — @~ E2F () — @ A2 F () ==
a=w-w Y [ a0 2 - 0, 22 r) - g 2P (4 (1)

The above equation is the most important formulation in this research. In fact, this equation relates the
changes of transient responses in the time domain, i.e., the left hand side, to the modal data, i.e., the right
hand side. In the right hand side, the first two terms represent the changes of displacement caused by the
variation of vibration mode. The third term represents the changes of displacement caused by the changes
of natural frequency. Furthermore, by observing Eq. (9), it can be found that F;(¢) is a harmonic function.
Then, in Eq. (17), the influences of variation of vibration mode on the transient response are harmonic.
However, the term of cos(w;#)t in F/(¢) of Eq. (14) is nonharmonic. Therefore, the influences of change of
natural frequency on the transient response, i.e., the third term of Eq. (17), are nonharmonic in the first-
order approximation. As stated later, the influence of the third term on transient responses is much more
significant than those of the first two terms. The above closed-form equation for the first-order approxi-
mation makes the computation cost very low and can also be used in other areas, such as for re-analysis in
general optimum design.

Following the work of Stetson (1975), the first-order perturbation is used to relate Aw; and A, with AK.
Under condition of stiffness change only, the changes in natural frequency and mode can be described as
follows:

1 [ Ak;

Aw; ~ = d 18:

@ 2 ( w; ) (18a)

M Ak

A=) 50, iF#] (18b)
2w

where
Ak; = ¢ AK @, (19a)

Eq. (18b) is only suitable for problems in which there are different natural frequencies. If a system possesses
multiple eigenfrequencies (eigenvalues), the change of mode relating to the eigenfrequencies is indefinite.
We will discuss this problem later.

Finally, from Egs. (1b), (17)—(19b), the potential change can be expressed as

T

N M T
¢; AK o, ¢; AK ¢,
Adg ~ S{ Z [ Z W‘P,‘P PEi(?) Z (PI(P, pEi(1) — W‘Pi‘PiTPF/(t)

i=1 =1 =1 i

i#) (20)

2.3. Identification technique for damage location

When using the finite element method (FEM), the stiffness change AK in system can be expressed as the
summation of the changes in elemental stiffness matrices as follows:
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ND
AK = "B/ Ak/B; (21)
=1
where ND is the number of damaged elements, B; is the Boolen matrix of element i and Ak; is the stiffness
change of element i, which can further be expressed as

where «; 1s a scalar denoting the damage fraction or damage extent (—1.0 < o; < 0.0) and AKk; is the stiffness
matrix of undamaged element i. For structures with single damage or multiple damages with the same
severity, the scalar o; can be extracted out in Eq. (21) (denoted by «) for separating the effects of damage
extent and damage location.

The electrical potential change on sensor / can be calculated from Eq. (20),

N M (P;r kN:Dl akBZAkkBk(Pj kN:Dl O(kBZAkkBk(Pj

M T
?;
) Wi i ;) Wi

i=1 j=1 i j=1

ol 00 B Ak B, 4
- LS Q,0;
;

1

PE(0)|, i#) (23)

where S; is the /th row of S matrix.

If we assume that the damage exists in one element only, i.e., ND = I, the comparison between the
numerical estimation in Eq. (23) and the corresponding experimental results Ad)g (¢) in the time domain can
be carried out one element by one element sequentially. However, as shown in our later numerical verifi-
cations, this comparison can be performed more effectively when transforming the data from the discrete
time domain to the frequency domain using the following FFT,

L-1
ADK] =D~ Adyg[n)wln]e /1 (24)
n=0
where w[n] is a window function to eliminate the effects of discontinuity and higher-order frequency.
Generally there are many window methods, such as Blackman window, Hanning window, Hamming
window etc. (Oppenheim and Schafer, 1989).

Generally, the various quantities obtained from the FFT can be employed for damage identification,
here the spectrum radius, i.c., |[Re(A®Y) + jIm(A®y)|| is used, which is also represented by A®g thereafter
for simplicity. Then, the simplest comparison between the measured results and the numerically estimated
results in the frequency domain can be carried out as follows:

AD(f;) ~ AD (/) (25)

where f; is a frequency sampling point within the frequency domain and A(I)g (f;) is the experimental data in
the frequency domain. However, a major difficulty using Eq. (25) is that we do not know the damage extent
and cannot predict A(I)’S (f;) accurately. Therefore, we can only compare the similarity or likelihood between
two curves of different amplitudes in the frequency domain. From a different point of view, the following
normalized correlation of the scale invariance is defined
. ADg - ADg
ADL AR ) = — S 26
N XX )

where A®; and A® are vectors with components A®g(f;) and A® (f;). When the above correlation is
close to 1, then two vectors are very similar. The possibility of the occurrence of damage in the corre-
sponding element is high. From Eq. (22), it can be seen that o, i.e., the damage extent can be eliminated in



H. Fukunaga et al. | International Journal of Solids and Structures 39 (2002) 393-418 399

Eq. (26). Then, Eq. (26) keeps only the information of damage location. Setting the number of sensors NSE
for comparison, for element i, the following equation is employed

NSE
E = |1 - p,(A®|,, ADS )| (27)
=

where A®y|; is the numerically generated data when assuming damage in element i.
The possible damage location is then indicated by the smallest discrepancy calculated from Eq. (27). The
following parameter D; is defined for element i:

p—L (28)

The largest one of D; corresponds to the possible damaged member. Therefore, the following damage index
is finally defined for element i

D;

DAMZ =
MAX(D;, j=1,2,...,NE)

(29)

where NE is the number of elements in structure.

Actually, the normalized correlation in Eq. (26) may also reduce the influence of errors caused by the
first-order approximation compared with Eq. (25). By checking the right hand side in Eq. (26), from Eq. (4)
for simplicity it can be expressed as follows:

A(DISA(Dg _A]O( +A20€2+A3O£3+-"NA1 AzBl —Ale

[AOL[[ARL| ~ Bt B + Byl +--- B B (30)

The error in the above formulation when using the first-order approximation, i.e., the relative error between
(Al(X +A20C2 +A3O!3 + - )/(Blfl +Bzd2 +B3d3 + - ) and Al/Bl is (Az — D)O{/Al, where D = Ale/Bl. For
the numerator only in Eq. (30), if the first-order approximation is used, the error, i.e., the relative error
between Ao + Ar0> + A30° + - -+ and 4o is A0/ A;. In the frequency domain, the positive spectrum radius
is used. Therefore, B; and 4; are negative due to negative a. Also it is easy to verify that 4, and B, are of the
same sign (in fact they are of the almost same order considering the spectrum radius used here). Then, from
the Cauchy inequality, we can obtain |B;| = |4,|. Therefore, generally |4, — D| is smaller than |4,|, and
errors from the first-order approximation in Eq. (26) are reduced.

The above identification procedure can also be employed in the time domain by replacing A(Dé (f) and
A®L (f) with Adg(7) and Adj (7) in Eq. (26).

There are two important characteristics in the current method. The first one is about the types of damage
that the analysis is applicable to. In Egs. (4) and (22), where the damage extent is represented by a scalar o,
then it is assumed that the damage affects the stiffness by the same proportion in all directions. For instance,
for one dimensional problems (e.g. a beam), the surface transverse crack (Wang et al., 2001) causing the
reduction of bending rigidity, belongs to this case. For two dimensional structures, the damage of a hole in
an isotropic material (Cawley and Adams, 1979; Banks et al., 1996) would be this case. Also, for two
dimensional structures of anisotropic materials, the damage by crushing, which includes many small ran-
domly oriented microcracks, can also be approximated using this type of damage (Cawley and Adams,
1979). However, the assumption is no longer valid with a macro/directional crack or damage in two di-
mensional or three dimensional structures, which causes the different changes of stiffness in the different
directions. The second one is that the model of damage used assumes that the damage is at one site only
because we search for the possible damaged area one element by one element. From our previous expe-
riences (Wang et al., 2001), for multiple damages, the present method can only roughly identify the area of
the highest damage severity or its adjacent area.
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2.4. Estimation of damage extent

When the possible damaged members are detected by employing the above technique, the estimation of
damage extent is the next important step. It is hoped that the undamaged members in the possible damaged
members detected in the first step can be removed. Furthermore, the investigation of damage extent in
damaged members can provide some important information about the structural safety.

The current algorithm is based on the minimization of a least-squared error function, which has the
following general form for one sensor, where the variables x are linearly constrained between bounds:

min  J(x) = Yje(x)|] (31)

where e(x) is a measure of discrepancy between an observation and its counterpart computed by the pa-
rameterized model.

Here, for the sake of simplicity, the data in the time domain are used. For sensor /, the measure of error
is the difference between the electrical potential change computed from the FEM model and its measured
counterpart of the real structure, i.e., e(at) = A(I)é(t,,) — A(I)g (t,), n=1,...,NS, where NS is the number of
sampling points in the time domain. The design variable vector & includes the damage extents of all possible
damaged elements detected in the first step.

If there are NP possible damaged members, from Eq. (23) we can obtain:

Ad (1) Zam , (32)
where
N M TpT M TpT
o; B, Ak, B, 0, o, B AkmBmtp T
Z,(1) =5 -y A 0,0 pFi( — L ] PFi(1)
D R T A LD D e
TRT
(pi Bm AkmBm(Pl . .
i U LAOI Y (33)

1

Then, from Eq. (31), the final optimization model can be cast into the following quadratic programming
problem:

min  f(a) = loaTAa+ C'a+ D

st. —d<Ia<0 (34)
where
a:{a17a27"')aNP} (353)
Zn 1(Zn) Z}:Isl VAN ZnN:SI AN
nzn n NS Znn
A— Zn:I.ZZZl Zn:l-(ZZ) : '. : Zn:l -Z2ZNP (35b)
Zn 1 er\lIPZ]n Zn 1 Z&PZS e Zn I(Zl’llP)z
{ Zn 1 Z’ll Ad)sm Zn 1 Zg A(I)Sw T Zn 1 Z’lilP Ad)sw } <3SC)
NS

p=%" (Aq)’*”) (35d)

n=1
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where the superscript # means that the quantity is evaluated at ¢, in the time domain. Also, d, 0 and I arc a
vector with all components of unit value, a vector with all components of zero, and unit diagonal matrix,
respectively.

The algorithm presented by Goldfarb and Idnani (1983) is adopted to deal with this quadratic pro-
gramming problem. Although the above formulations are constructed for the data of only one sensor, it is
not difficult to extend it for the data of multiple sensors. The constrained optimization problem in Eq. (31)
is intrinsically nonlinear, and the first-order approximation in Eq. (32) is introduced to linearize it.
However, if the absolute value of «; is not small enough, the precision of linear approximation cannot be
guaranteed. Then, the following iterative process is employed to correct the above standard algorithm.

Step 1: Initialize — Initialize the variables, vectors and matrixes that will be utilized. Start with a working
set that there is no damage in the structure:

AK" =0 (36a)

o' =Aa" =0 (36b)

Step 2: Solve quadratic programming problem — Calculate the change of stiffness matrix AK'~' according
to the current increment of damage extent Ae’~!, which is used to replace the unknowns o in Egs. (34)-
(35d). Add up the iteration index (i =i+ 1), and update the stiffness matrix:

K =K'+ AK™! (37)

Use K' to carry out a new elgenvalue computation and update @; and w;. Introduce into 6(A¢S ), which is
expressed as follows, to replace A(I)S in Egs. (35c) and (35d).

5(AdS) = AdL — (Ads) (38)

Use updated @; and w; to construct new Z, (), A matrix and D vector, then solve the quadratic pro-
gramming problem (34) to get the increment of d:lclmage extent Ad’. In Eq. (38) A(I)S is the electrical po-
tential changes experimentally acquired, and (Adg)' = ((I)S) (%), where (¢g)" and ((I)S) are electrical
potentials computed from K’ and K°, respectively.

Step 3: Evaluate the discrepancy of the linear approximation — Update the damage extents as follows:

o =o'+ Ao (39)

If Aot is less than a pre-set threshold, it can be considered that the obtained damage extent o is sufficiently
close to the real value, then terminate the analysing procedure. Otherwise, go back to step 2. Naturally, the
constraint conditions in Eq. (34) for a should be changed in terms of o/~ and Ao’

3. Numerical examples

A beam shown in Fig. 1 is employed to investigate the effectiveness of the proposed identification al-
gorithm. The propped cantilever beam is chosen here arbitrarily although the current method has been
verified to be effective for other structures, such as cantilever beam. The materials constants of composite
plate of 0° plies only are listed as: E;; = 142.0 GPa, Ey» = 10.3 GPa, G, = G35 = 7.2 GPa, Gy; = 4.29 GPa,
vi» = 0.25 and p = 1382.1 kg/m?, where “1”” and “2” denote the x-axis direction and the y-axis direction,
respectively. The mechanical and piezoelectric properties of PVDF sensor are: £y = Ey = E3; = 2.0 GPa,
G12 = G13 = G23 =0.8 GPa, Vig = V3 = Vi3 = 025, d31 = —154.0 pm/V, d32 =0.0 pm/V, D33 = 0.1505 x
10~° F/m and p = 1300.0 kg/m?. Only the bending deformation in the x-axis direction is considered. The in-
plane deformation, the bending deformation in the y-axis direction and the torsional deformation are
neglected for the sake of simplicity. Our previously proposed nine-node element using a higher-order plate
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Top View
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Side View
Carbon/Epoxy p=Fsin(ot) 0.14 cm
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/L Sensor 1 8 cm va{ﬁlm SenS({ZS J T T

Fig. 1. Geometry of a beam with an attached piezoelectrics layer.

Table 1
Natural frequency of a beam
1 2 3 4 5 6 7
o (rad/s) 3206.448 9711.978 18500.737 28 545.475 31260.393 32634.059 35179.090
f (Hz) 510.322 1545.709 2944.484 4543.153 4975.246 5193.872 5598.926

theory (Fukunaga et al., in press) is employed and degrees of freedom of system for the mechanical field are
141. The first seven natural frequencies of beam are shown in Table 1. The frequency of three identical
concentrated external forces, i.e., @, is 22000 rad/s, which is located between the third and fourth circular
natural frequencies of beam. The amplitude of the concentrated forces is 50 N. The damage is assumed to
occur at element 3 with the reduction in the elastic modulus. As stated previously, we should use the same
reduction proportion representing damage for all tension and shear module (i.e., E|;, E», G2, Gi3 and Gy3).
Then, the damage extent « can be extracted from an orthotropic elastic matrix as that in Eq. (22) and then
can be eliminated finally in Eq. (26). In the following computation, the time increment step is 2 ps, and N
and M in Eq. (20) for modal superposition are 50.

3.1. Comparison of the static and dynamical response of sensors

At first, for various damage extents, the electrical potentials of sensors under the static load are plotted
in Fig. 2. In this figure, only the electrical potential on sensor 3 under the damaged element, changes
significantly. The electrical potentials of other sensors have almost not changed. Therefore, it is very dif-
ficult to identify the damages using the static data if the sensor is not located in the damaged areas because
the data of sensor can only reflect the local stiffness change caused by damage. Moreover, from this figure,
it can be found that element 3 carries relatively low strain energy, then it is a relatively difficult case for
identification. Under the dynamical load, the electrical potential changes on sensors 3 and 6 are shown in
Figs. 3 and 4, respectively. Both figures show the significant changes. With the increase of time, the changes
become more obviously. Therefore, unlike the static case, it is possible to use the data obtained from a
sensor, which is not located in the damaged areas, to identify the damage.

3.2. Discussion on accuracy of the first-order approximation

To check the accuracy of the first-order approximation, the change of central deflection of beam is
employed as shown in Fig. 5. In this figure, two kinds of first-order approximation approaches are em-
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ployed. FODAI denotes that all three terms are used in Eq. (17) and FODA?2 denotes that only the third
term in Eq. (17) is used. Then, in FODAZ2, the contribution of changes of vibration mode is ignored. In-
spection of this figure reveals that the first-order approximation has quite high accuracy even for 30%
damage extent. For 50% damage extent, the accuracy of the first-order approximation decreases. The
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accuracy of FODAZ2 is only a little lower than that of FODAI1 within an initial time period. Therefore,
compared with the effect of changes of natural frequency, the contribution of changes of vibration mode is
small. In fact, Weissenburger (1968) has shown that the mode shapes do not change much as local stiffness
or mass is modified. Also, Chance et al. (1994) showed that the mode shapes of a damaged system and that
of an undamaged system are nearly the same. Armon et al. (1994) also assumed that mode shapes remain
unchanged by the small change in stiffness. Stubbs (1987) even pointed out that they are exactly the same if
the damage is uniform. Then, for some structures with multiple eigenfrequencies, such as symmetrical
structures, the changes of vibration mode for these frequencies are indefinite. In this case, the following two
procedures can be taken simultaneously. One is to choose the frequency of external force to be far from
multiple eigenfrequencies since the structural transient response is mainly dominated by the modal data of
the natural frequencies, which are close to the frequency of external force. Another is that, in the first two
terms of Eq. (17), the contribution of changes of vibration modes for multiple eigenfrequencies is neglected,
but the contribution of changes of vibration modes of single frequency is kept. Furthermore, in the third
term, the contribution of all modes should be considered.

3.3. Discussion on data of time domain and frequency domain

When the damage extent is low, due to the high accuracy of the first-order approximation, usually the
damage identification, i.e., Eq. (26) can also be used in the time domain. However, the problem arises for
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seriously damaged cases. For instance, for 50% damage in element 3, by employing the data in the time
domain obtained from the sensors far away from the damage area, such as 6, 7 and 8, we found that the
possibilities of damage in elements 1, 2 and 4 (D; in Eq. (28)) are also very high using Eq. (26) although the
highest possibility of damage still appears in element 3. To explain the reason, the results of the potential
change on sensor 6 are shown in Fig. 6 when assuming the damage in elements 1, 2, 3 and 4, respectively.
Fig. 6 shows that it is very difficult to distinguish which one in the results of elements 1, 2, 3 and 4 is more
similar to the exact result, especially between the results of element 1 and element 3.

To overcome this problem, the data in the time domain are transformed into the frequency domain using
Eq. (24). Our numerical experiences have shown that the application of window methods in FFT, such as
Blackman window or Hanning window, can lead to obviously better results even for numerically simulated
experimental data. When using practical experimental data with high noises, the window methods may be
more helpful. Fig. 7 shows the spectrum radius of potential change on sensor 6 in FFT using Blackman
window when assuming the damage in elements 1, 2, 3 and 4, respectively. Note that the negative frequency
domain in this figure is only the result of FFT transformation on the mathematical meaning, not on the
physical meaning. Inspection of this figure reveals that the result of element 3 is most similar to the exact
solution although the amplitude is different. Here, we emphasize on curve shape, not scale or size, since
practically we have no information about the damage extent. The curve shapes for elements 1, 2 and 4 in the
frequency domain are completely different from the exact solution. From Fig. 7, it can be concluded that
the first-order approximation can capture the main features of potential change in the frequency domain.
Furthermore, through the use of the first-order approximation, the influence of damage extent is completely
extracted out and separated from the influence of damage location. For instance, Fig. 7(f) shows the result
using Blackman window when assuming 10% damage in element 3. By comparing Fig. 7(f) with 7(b) of
50% damage case, it can be found that the shapes of two curves are completely identical except the dif-
ferent amplitudes or scales.

The data shown in Fig. 7 are different from the usual FRF data used by other authors, such as Schulz and
Thyagarajian (1995), Keilers and Chang (1995a,b) and Wang et al. (1997) from following several respects.
First, here the FFT transformation is performed on the data of electrical potential change in the time do-
main. Therefore, the obtained data in the frequency domain contain the integrated modal information
(especially natural frequency information) of both undamaged and damaged structures, i.e., the changes in
natural frequency and mode due to damages. Inversely, the usual FRF data used by other authors are only
for the undamaged or damaged structures independently. Second, for a prescribed excitation frequency of
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external force, the present data contain the information of those modal data whose natural frequencies are
close to the excitation frequency. For instance, because the excitation frequency is located between the third
and fourth natural frequencies here, Fig. 7(a) contains the information of the first several modal data and
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their changes by observing Table 1. However, in the usual FRF under harmonic excitation, it contains the
information of one frequency point only. For instance, when the frequency of harmonic excitation is equal to
a natural frequency, the resonance occurs and only the modal data corresponding to that natural frequency
can be obtained. Third, to obtain the usual FRF curves numerically, one needs to scan over the whole
frequency domain where he is interested. Then it is computationally very expensive. For example, if one
needs to obtain the frequency responses at 100 frequency points, he has to perform 100 inverse computation
of a large-scale equation with components of complex number (Schulz and Thyagarajian, 1995). However,
only the analysis of transient response using Eq. (23) and one FFT analysis are needed here, whose com-
putational costs are comparatively very low.

In the present analysis, the sufficient long sampling time domain should be taken in order to guarantee
the accuracy of FFT transformation and include the sufficient modal data. Our numerical experiences have
shown that the time domain should be at least taken up to 73 = 1/f; for obtaining stable results in the
frequency domain, where f; is the fundamental frequency of structures. Of course, too long time domain
may decrease the accuracy of Eq. (15).

3.4. Results of damage location identification

When using Eq. (26), the frequency domain is taken from —6840 to 6840 Hz. Twenty nine sam-
pling points within this frequency domain are used. The results of damage detection for 10% damage
case are illustrated in Fig. 8 when using the data of sensor 1, sensor 6 and sensor 8, independently. Fig. 8
shows that the damage location can be detected very successfully. When using data of other sensors, the
damage can also be detected very clearly. Of course, the location of sensor has certain influences on the final
results.

We also computed Eq. (26) in the time domain. The time domain is chosen from 100 to 2000 ps, and the
number of sampling points is 951. Fig. 9 shows the results when using the data of sensor 1 and 8§, re-
spectively. Comparing with Fig. 8(a) and (c), it can be seen that the results in Fig. 9 become worse, es-
pecially for sensor 8.

When the damage extent in element 3 is up to 50%, the identification results are shown in Fig. 10. In-
spection of this figure reveals that the results become worse (especially for sensor 8) due to the errors in-
troduced in the first-order approximation, although the damage location can be identified.

3.5. Effect of excitation frequency of external force

To investigate the influence of the frequency of external force, we change the frequency of external force
o, from 22000 to 3000 rad/s, which is lower than the 1st circular natural frequency. When using the data of
sensor 1, 6 and 8 independently, the results for 10% and 50% damage cases are shown Figs. 11 and 12,
respectively. From these figures, it can be found that the damage location can be identified more clearly,
especially when using the data of sensor 8 for 50% damage case. We drop w, again from 3000 to 1000 rad/s,
it was found that the damage can also be identified although the results become only a little worse com-
pared with those of 3000 rad/s. However, the results of 1000 rad/s are better than those of 22000 rad/s.
Also, we computed the results when increasing @, from 22000 rad/s to a higher level, e.g. 33000 rad/s.
It was found that the damage can also be located successfully. However, the results become a little
worse compared with those of 22000 rad/s. Therefore, it can be pointed out that the present algorithm is
not sensitive to the frequency of external force. However, the better results can be obtained when the
frequency of external force is around or even lower than the Ist circular natural frequency in the present
example.
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3.6. Effect of modelling error and measurement noise

To investigate the robustness of the present technique, the numerical modelling errors and experimental
measurement noises are simulated in three steps in the present researches, which are shown in Fig. 13. The
first step is to simulate the period elongation due to the disregard of some factors in numerical modelling,
such as damping. The original data in the time domain are first elongated with AT (50 ps) as shown in Fig.
13 (note the fundamental period of beam is 1959 ps Table 1). The second step is to enlarge the response in
the time domain as shown in Fig. 13 to simulate the uncertainties of boundary conditions and material
constants. In Fig. 13, A4 is set as O.OSAd)’S(t), i.e., 5.0% increase corresponding to the amplitude of electrical
potential change in the time domain. The third step is to simulate the higher frequency noises from electrical
measurement devices. The random noise (white noise with zero mean value) is simulated with the level of
2% of (Adg(t) + 0.05Ady(¢)), which is added over the electrical potential change after step 2. After obtained
the contaminated experimental data in the time domain, the FFT transformation is performed and the
damage location is identified. When w; is selected as 3000 rad/s, the corresponding results are shown in
Figs. 14 and 15 for 10% and 50% damage cases, respectively. Comparing these figures with Figs. 11 and 12,
no obvious influences from the added high level noises and great modelling errors can be identified. The
damage location can also be detected clearly, and the robustness of the present technique is quite high.
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3.7. Results of damage extent

Finally, the damage extent is calculated using the nonlinear least-square algorithm stated previously. w;
is equal to 3000 rad/s. 1100 sampling points (i.e., NS) in the time domain from 0 to 2200 ps are used. For
10% damage case, the results of damage extent are shown in Table 2 when using the data of three sensors,
independently. The possible damaged element is chosen as element 3 by observing Fig. 11. Table 2 shows
that good results can be obtained. The convergence history is shown in Fig. 16(a) in which only two or three
iterations are needed before convergence. The results for 50% damage case are shown in Table 3, in which
three sets of possible damaged elements are chosen to check the effectiveness of the present nonlinear least-
square technique. In the first set, only element 3 is chosen and the corresponding convergence history is
shown in Fig. 16(b). Table 3 shows that good results can be obtained. In the second set, by observing Fig.
12, we chose three possible damaged elements as shown in Table 3. From this table, it can be found that the
damage extent in element 3 can be obtained accurately and two undamaged elements can be distinguished
from 3 candidates due to their low damage extents. Finally, we chose all 8 elements as candidates. The
results in Table 3 shows that the damage extent in element 3 can also be predicted accurately and other
elements can be removed from the candidates. This example shows that the present analysis procedure is
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effective although only the data from one sensor are employed. Naturally, when using practically measured
data, it is difficult to obtain the accurate damage extents due to the influence of noises and modelling errors.
Also, for complex structures, it is not practical to choose all elements as candidates to perform the non-
linear least-square computation. Therefore, the detection of damage location in the first stage is crucial to
reduce the number of possible damaged elements and increase computational efficiency.

4. Conclusions

In this paper, a two-stage damage identification method using the limited number of piezoelectric sensors
(actually only one sensor is employed here) has been proposed. In the first stage, a first-order approxi-
mation technique is proposed for obtaining the transient response of electrical potential changes on sensors.
After the FFT transformation of the numerical and experimental data from the time domain to the fre-
quency domain, an identification technique for damage locations is proposed by matching the numerical
data and the experimental data. After obtaining the possible damage locations, in the second stage, an
iterative estimation scheme for solving nonlinear optimization programming problems is presented to
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predict damage extents. A beam example is employed to illustrate the effectiveness of the present algorithm.
From the numerical example, it was found that the accuracy of the first-order approximation technique is
high. The damage identification results using the data in the frequency domain are better than those using
the data in the time domain. The window methods used in the FFT are helpful for enhancing the identi-
fication accuracy. Furthermore, the influences of the frequency of external force, and modelling errors and
measurement noises on the identification results are not obvious. Naturally, the current approach has its
own drawbacks, such as the strong dependence on the reliable modal data of undamaged structure for
obtaining a reasonable first-order approximation in Eq. (20). Also, for complicated structures, its effec-
tiveness needs to be further investigated numerically and experimentally. This paper just shows a possible
direction of the application of piezoelectric sensors for damage identification.

Appendix A
In this paper, the finite element computation is carried out based on a nine-node higher-order plate

element proposed by the authors (Fukunaga et al., in press). In this element, the following third-order
displacement fields have been adopted:

u(x,y,z):uﬁ{ex—%‘(%)z(eﬁz_:ﬂ (A1)

U(x,y,z)zvo—l-z{Oy—g(%)z(()y—FZ—l;)} (A.2)

w(x,y) = wy (A.3)
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where uy, vy and wy are the displacements on the mid-plane, 0, and 0, are the rotations due to shear de-
formation about the y and x axes respectively and / is the thickness of plate. This displacement field satisfies
free conditions of the transverse shear strains on the top and bottom surfaces of plate, i.e.,

&e(x,y,£(h/2)) = 0 and ¢,.(x,y, £(h/2)) = 0.

The strains associated with the displacements in Eqs. (A.1)—(A.3) can be described as

e, 3,2) = &) + 2(k] + 2'1))
&(x,»,z) = 82 +Z(K2 +ZZK}1,)
en(x,3,2) = &), +2(k), + 2K,

(%, p,z) = 832 +ZZK)1)Z

e(x,¥,2) = 822 + zzxi,
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Table 2
Results of damage extent (10% damage)
Possible damaged element Damage extent
Data of sensor 1 3 —0.09844
Data of sensor 6 3 —0.09875
Data of sensor 8 3 —0.09863
where
Ou ov Ouy Ov
0 0 0 0 0 0 0
& = — & == &, == +t—— A9
* o ox vy w0y Ox (A9)
o 00, 00, 00, 00,
T yo oy’ w0y Ox

G (N S il (A10)
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H. Fukunaga et al. | International Journal of Solids and Structures 39 (2002) 393-418 415

—
QD
=~
—
O
~

0095 = —04
: E st -
2 —0100 F =
= k=
3 & —o6 |
: :
g —o0105 | A
£ —a— Sensor 1 é 07T
bt —e— Sensor 6 bt —=— Sensor 1
12 —0.110 o Sensor 8 S sk —e— Sensor 6
- = —4— Sensor 8
1 g
F oo —— : L i : : 4
Number of Iteration Number of Iteration
Fig. 16. Convergence history of damage extent: (a) 10% damage and (b) 50% damage.
Table 3
Results of damage extent (50% damage)
Possible damaged element Damage extent
Data of sensor 1 3 —0.49674
3,4,5 —0.49404, 0.0, 0.0
3,1,2,4,56,7,8 —0.49329, 0.0,—0.00242, 0.0, 0.0, 0.0, 0.0, 0.0
Data of sensor 6 3 —0.49507
3,7,8 —0.49620, 0.0, 0.0
3,1,2,4,5,6,7,8 —0.49372, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
Data of sensor 8 3 —0.50132
3,2,7 —0.49643, —0.00056, 0.0
3,1,2,4,56,7,8 —0.49641, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,—0.00006
4 (00, a0 *w
K= (22 (A.11)
Y 32\ 0y  Ox Ox Oy
ow ow
0 _ hldd 0 _ -
sxz—9x+ax, 8),_,—9y+ay

A.12)
4 ow 4 ow (
1 _ T r__ 7 s
Ky = 2 (GX + @x)’ K, 7 (0,1’ + ay)

The second-order derivatives of displacement in strains imply that elements of C'-continuity are

generally necessary. To derive a FEM using C°-shape functions, two additional nodal degrees of free-
dom, ie., x = {way}T — {ow/0x,0w/dy}" have been introduced. The nodal displacements are u¢ =
{uby, vh,wi, 0,0, 1, x;}T. Then, the higher-order curvature and transverse shear terms in Egs. (A.9)—(A.12)

become as o
4 (00, 0y 4 (00, Oy
1_ x x r_ 7 [y T Al
" 3n? ( o | ox )’ oy 32 ( dy + dy (A-13)

4 (00, o0, oy O
P4 (%0, 00, On O Al4
& 3h2(6y+ax+6y+ax) (A-14)
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& =0+1, =0+, (A.15)
4 4
K)lcz: _ﬁ(gx—"_)(x% K)lz: __2(0V+Xy) <A16)

The conditions ¥, = y, — (0w/dx) = 0 and y, = y, — (Ow/dy) = 0 are enforced to be satisfied in the
principle of virtual work using the penalty functlon method and selective reduced integration scheme. Then,
the mechanical and electrical response of piezoelectrics can be obtained using the principle of virtual work
to the equation of balance of momentum in the elastic field and the Maxwell’s equation in the electric field

as
h/2 h/2
/ de'TD.e" — 5" Te'E — SETe Te” / (SETpE)dz + / (3W ' D\r)dz
Se —h/2 —h/2
h/2
+/ (pduii)dz|dS — dW, + W, =0 (A.17)
—h/2

where S, is the element area, D, is the elastic matrix, €" is the piezoelectric coefficient matrix, E is the electric
field vector which is equal to —V(])S, p is the dlelectrlc mdtrlx and the strdln vector £ = {&° k°, k!, &0, k!

where &’ *{ax,c‘,exv} K’ 7{er o xy} k' = {x}, K}, K, g ={e), &) 1" and k! = {x, VZ} Also, in

Eq. (A.17) there is \ = {y_, ¥} and Dy is the penalty rnatrix includmg penalty parameters o, and o, as

D, - {“x 0] (A.18)

0 o

Finally, the system equation can be written as

kR REETHEES

where the system matrices are assembled from the elemental matrices, which are

+1 +1 N +1 +1 h/2 T
K;u—K;ﬁK;p:L L BchdeetJdédn+[1 [1 /mbDpdez det Jdédy

(A.20)

w_/ / Bje'B, det Jd¢dy (A.21)
+1 h/2

K¢, = / / ( / pB¢dz> det Jdédy (A.22)
h)2
ol h)2

M, = / / ( / pNTNdz) det Jd&dy (A.23)
1 Jo )

Furthermore, the field variables are interpolated as follows:

Yy =Byu’, E=B,¢g and & = B’ (A.24)
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The selective reduced integration scheme is used for the second term in Eq. (A.20), i.e., the penalty term, to
overcome the possible locking phenomenon.
As a general condensation procedure, Eq. (A.19) can be cast into the following form:

M,.ii + K'u = F, — F, (A.25)

where the effective stiffness matrix K® and actuator force vector F, can be written as
KO = Kuu - KuqﬁK;gle(bua FA = Kud)(I)A (A26)
The electric potential of sensors due to deformation can be obtained as
¢s =—Su and S =K Ky, (A.27)

It should be noted that structural damages only affect the matrix K,,,.
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